Redox Flow Desalination (RFD). Nuevo gran avance tecnológico de la NYU en la eliminación de sal de agua de mar.

El equipo Tandon de la Universidad de Nueva York ha logrado un aumento del 20 por ciento en la tasa de eliminación de sal del sistema mientras reducía su demanda de energía optimizando las tasas de flujo de fluidos.

Estos resultados se muestran en un artículo publicado en Cell Reports Physical Science, el equipo de NYU Tandon liderado por Dr. André Taylor, profesor de ingeniería química y biomolecular y director de DC-MUSE (Descarbonización de la Fabricación Química a través de la Electrificación Sostenible).
El estudio actual se basa en el extenso trabajo del profesor Taylor en energía renovable, con un énfasis reciente en almacenar energía producida de manera sostenible para su uso durante horas fuera de pico.

La RFD ofrece múltiples beneficios. Estos sistemas proporcionan un enfoque escalable y flexible para el almacenamiento de energía, permitiendo la utilización eficiente de fuentes de energía renovable intermitentes como la solar y la eólica. La RFD también promete una solución completamente nueva a la crisis mundial del agua.

«Al integrar sin problemas el almacenamiento de energía y la desalinización, nuestra visión es crear una solución sostenible y eficiente que no solo satisfaga la creciente demanda de agua dulce sino que también promueva la conservación ambiental y la integración de energía renovable», dijo Taylor.

La RFD puede reducir tanto la dependencia de las redes eléctricas convencionales como también fomentar la transición hacia un proceso de desalinización de agua ecoamigable y neutro en carbono. Además, la integración de baterías de flujo redox con tecnologías de desalinización mejora la eficiencia y la fiabilidad del sistema.

La capacidad inherente de las baterías de flujo redox para almacenar energía excedente durante períodos de abundancia y descargarla durante la demanda pico se alinea perfectamente con los requisitos energéticos fluctuantes de los procesos de desalinización.

Redox_Flow_Desalination-RDF-Taylor_schematic
«El éxito de este proyecto se atribuye a la ingeniosidad y perseverancia de Stephen Akwei Maclean, el primer autor del artículo y candidato a doctorado en ingeniería química y biomolecular en NYU Tandon», dijo Taylor. «Demostró una habilidad excepcional al diseñar la arquitectura del sistema utilizando la avanzada tecnología de impresión 3D disponible en el NYU Maker Space

Las complejidades del sistema involucran la división del agua de mar entrante en dos corrientes: la corriente de salinización (Imagen arriba, CH 2) y la corriente de desalinización (Imagen arriba, CH 3). Dos canales adicionales albergan el electrolito y la molécula redox (Imagen arriba, A). Estos canales están efectivamente separados por una membrana de intercambio catiónico (CEM) o una membrana de intercambio aniónico (AEM).

En CH 4, los electrones son suministrados desde el cátodo a la molécula redox, extrayendo Na+ que difunde desde CH 3. La molécula redox y Na+ se transportan entonces a CH 4, donde los electrones se suministran al ánodo desde las moléculas redox, y se permite que Na+ difunda en CH 2. Bajo este potencial general, los iones Cl- se mueven de CH 3 a través del AEM a CH 2, formando la corriente de salmuera concentrada. En consecuencia, CH 3 genera la corriente de agua dulce.
«Podemos controlar el tiempo de residencia del agua de mar entrante para producir agua potable operando el sistema en modo de paso único o por lotes», dijo Maclean.

En la operación inversa, donde se mezclan la salmuera y el agua dulce, la energía química almacenada se puede convertir en electricidad renovable. En esencia, los sistemas RFD pueden funcionar como una forma única de «batería», capturando el exceso de energía almacenada de fuentes solares y eólicas.

Esta energía almacenada se puede liberar a demanda, proporcionando un complemento versátil y sostenible a otras fuentes de electricidad cuando sea necesario. La doble funcionalidad del sistema RFD muestra su potencial no solo en desalinización sino también como un innovador contribuyente a las soluciones de energía renovable.

Aunque se requieren más investigaciones, los hallazgos del equipo de NYU Tandon señalan un camino prometedor hacia un proceso RFD más rentable, un avance crítico en la búsqueda global de un aumento de agua potable. A medida que el cambio climático y el crecimiento de la población se intensifican, más regiones luchan contra la escasez de agua, subrayando la importancia de métodos de desalinización innovadores y eficientes.

Esta investigación se alinea perfectamente con la misión de DC-MUSE (Descarbonización de la Fabricación Química Utilizando Electrificación Sostenible), una iniciativa colaborativa establecida en NYU Tandon. DC-MUSE está comprometido con el avance de actividades de investigación que disminuyan el impacto ambiental de los procesos químicos a través del uso de energía renovable. El estudio actual se basa en el extenso cuerpo de trabajo del profesor Taylor en energía renovable, con un énfasis reciente en almacenar energía producida de manera sostenible para su uso durante horas fuera de pico.

Además de Taylor y Maclean, el equipo dedicado de investigadores de NYU Tandon que contribuye a este estudio incluye a Syed Raza, Hang Wang, Chiamaka Igbomezie, Jamin Liu, Nathan Makowski, Yuanyuan Ma, Yaxin Shen y Jason A. Röhrl. Colaborando a través de fronteras, Guo-Ming Weng de la Universidad de Jiao Tong en China también jugó un papel crucial como miembro del equipo.

Un hito excepcional, esta publicación marca la 100ª de Taylor’s Transformative Materials & Devices Lab. Originalmente establecido en la Universidad de Yale en 2008 y posteriormente trasladado a NYU Tandon en 2018, el laboratorio se centra en el desarrollo de materiales y dispositivos innovadores para la conversión y almacenamiento de energía, reflejando el compromiso duradero de Taylor con la investigación transformadora en el campo.

 

Esquema del sistema de desalinización de flujo redox de 4 canales del profesor Taylor, interpretado por la IA Dall-E.
Esquema del sistema de desalinización de flujo redox de 4 canales del profesor Taylor, interpretado por la IA Dall-E.

Fuente: Investigadores de NYU Tandon descubren una solución eficiente en energía para la crisis mundial del agua

El diario El Mundo se hace eco del ‘Proyecto Recolecta’ de Florette, BrioAgro e ITC

El Proyecto Recolecta es un proyecto europeo cuyo piloto es Florette, líder en España del sector de la IV gama en la producción y distribución de ensaladas y vegetales preparadas listas para su consumo, en el que se busca encontrar, a través de la tecnología, el momento óptimo de recolección, lo que llevará a un aumento de calidad y una mayor sostenibilidad y satisfacción del cliente. Sus compañeros de viaje son BrioAgro, empresa encargada de la parte tecnológica del proyecto, de la monitorización y del riego inteligente; y el ITC (Instituto Tecnológico de Canarias), que participa con sus Departamentos de Agua y Análisis Ambiental para contribuir al estudio del suelo y del agua, entre otros.

Mostramos el resumen elaborado por el Diario El Mundo tras entrevistar a los representantes de las tres empresas que forman parte de El Proyecto Recolecta:

  • Javier Les, Director Calidad y Sostenibilidad de Florette Ibérica
  • José Luis Bustos, Director de BrioAgro
  • Ricardo Díaz, Jefe del Departamento de Análisis Ambiental ITC

La cultura popular siempre habla del momento preciso y del lugar adecuado, ¿en el campo funciona igual? ¿Cuál es el momento óptimo de recolección de un vegetal?
Javier Les.- En Florette siempre cultivamos nuestros vegetales sin prisas, dejándolos crecer a su ritmo natural para conseguir el mejor producto posible. Así, consideramos que el momento óptimo de recolección de un vegetal no es más que aquel que permita la mejor calidad y vida útil del producto final para el consumidor, entendiendo los criterios de calidad desde diferentes ángulos: frescura, sabor, organolepsia, seguridad alimentaria y nutricional. Nuestro objetivo es buscar siempre el momento idóneo en el que el cultivo va a poder desarrollar su mayor potencial de cara a estos dos aspectos, calidad y vida útil.

¿Cuáles son los objetivos del Proyecto Recolecta?
José Luis Bustos.- Gracias a la utilización de nuevas tecnologías y de agricultura de precisión, perseguimos el objetivo principal de disponer de una herramienta que determine de forma inteligente y autónoma la fecha óptima de recolección de los cultivos para maximizar la calidad y vida útil del producto final.
Ricardo Díaz.- Además, gracias a la implementación de este proyecto en los campos de Florette, se conseguirá optimizar la utilización de los recursos naturales, tan necesarios para el crecimiento de nuestros productos de IV gama, tales como el suelo, o el agua.
Javier Les.- Con todo esto pretendemos conseguir dos finalidades claras. Por un lado, conocer la fecha óptima de recolección supondrá un mejor aprovechamiento del producto y, por tanto, reducirá de manera notable el desperdicio de los vegetales. Por otra parte, avanzaremos un paso más en temas calidad de producto, ya que, gracias a estos avances tecnológicos, no quedará ninguna duda de cuándo los vegetales están en el mejor punto de frescura y calidad para distribuir al consumidor final.

¿En qué fase del proyecto estáis ahora y cuál es el balance hasta día de hoy?
Javier Les.- En Florette nos encontramos en la última fase del proyecto. Ya se han realizado todos los trabajos que teníamos planificados dentro de RECOLECTA y hemos recopilado la mayor parte de la información necesaria para analizarla y tratarla. Por el momento, podemos adelantar que el balance es muy positivo y, de hecho, creemos que se van a alcanzar la mayor parte de los objetivos iniciales planteados.
José Luis Bustos.- Por nuestra parte, BrioAgro, nos encargamos de la parte tecnológica del proyecto, de la monitorización y del riego inteligente, se encuentra en la fase de tratamiento. Tras el primer año se observaron algunos resultados iniciales en bruto y eran muy positivos. Ahora mismo, continuamos recopilando a tiempo real más datos en los campos para afinar el modelo. Por otro lado, se está finalizando el desarrollo del código informático y pantallas del aplicativo para mostrar los resultados.
Ricardo Díaz.- Respecto a ITC, en materia de agua, se han caracterizado las aguas de riego de varias fincas como herramienta para adelantarse a las necesidades del ecosistema suelo-planta y ajustar el riego. Paralelamente, se está analizando el proceso del lavado industrial para proponer diferentes opciones de reutilización de esta agua como forma de reducir la huella hídrica y de carbono, así como conseguir reducir los costes de explotación. Asimismo, se está trabajando en la optimización del uso de productos fitosanitarios a través de la utilización de productos naturales para garantizar ensaladas sin ningún tipo de residuos.

¿Qué resultados esperáis obtener una vez finalizado el Proyecto Recolecta?
Javier Les.- Esperamos obtener resultados muy positivos, el principal es disponer de una herramienta digital válida para determinar el momento óptimo de recolección de nuestros cultivos.
Ricardo Díaz.- Además, conseguiremos optimizar el uso del agua de riego y del agua de lavado industrial y también del uso de fitosanitarios y fertilizantes; minimizar el desperdicio alimentario ya que gracias a esta herramienta nos permite hacer una mejor planificación de los cultivos.
José Luis Bustos.- No solo eso, también nos permitirá estudiar la posibilidad de reutilizar el agua en el centro de producción o con un uso agrícola. En esa misma línea y con el objetivo de optimizar la utilización del agua, se podrán establecer criterios de uso de los diferentes tipos de agua para riego: desalada, lluvia, pozo o galería e, incluso, desarrollar nuevas técnicas industriales más sostenibles, como nuevos sistemas de lavado o de enfriado de materia prima.

Y hablando un poco más de lo que veremos los consumidores, ¿qué aplicaciones prácticas tendrá?
Javier Les.- Los principales beneficiados de este proyecto son el entorno y los consumidores. Son ellos los que verán reflejados los avances que supone RECOLECTA en el producto, ya que obtendrán, como beneficios directos, un vegetal de la máxima calidad y con una vida útil superior. Además, estarán consumiendo un producto más sostenible y respetuoso con el medio ambiente, ya que gracias a la tecnología desarrollada en este proyecto no se derrochan recursos. De hecho, se consigue un menor consumo de agua en campos y en el momento del lavado del vegetal, de fertilizantes y de fitosanitarios. Igualmente, garantizará al máximo la seguridad alimentaria de los productos. Con estos avances tecnológicos no quedará ninguna duda de cuándo los vegetales están en el mejor punto de frescura y calidad para distribuir al consumidor final y, por tanto, se ofrecerá un producto en óptimas condiciones.

Social media & sharing icons powered by UltimatelySocial