El equipo Tandon de la Universidad de Nueva York ha logrado un aumento del 20 por ciento en la tasa de eliminación de sal del sistema mientras reducía su demanda de energía optimizando las tasas de flujo de fluidos.
Estos resultados se muestran en un artículo publicado en Cell Reports Physical Science, el equipo de NYU Tandon liderado por Dr. André Taylor, profesor de ingeniería química y biomolecular y director de DC-MUSE (Descarbonización de la Fabricación Química a través de la Electrificación Sostenible).
El estudio actual se basa en el extenso trabajo del profesor Taylor en energía renovable, con un énfasis reciente en almacenar energía producida de manera sostenible para su uso durante horas fuera de pico.
La RFD ofrece múltiples beneficios. Estos sistemas proporcionan un enfoque escalable y flexible para el almacenamiento de energía, permitiendo la utilización eficiente de fuentes de energía renovable intermitentes como la solar y la eólica. La RFD también promete una solución completamente nueva a la crisis mundial del agua.
«Al integrar sin problemas el almacenamiento de energía y la desalinización, nuestra visión es crear una solución sostenible y eficiente que no solo satisfaga la creciente demanda de agua dulce sino que también promueva la conservación ambiental y la integración de energía renovable», dijo Taylor.
La RFD puede reducir tanto la dependencia de las redes eléctricas convencionales como también fomentar la transición hacia un proceso de desalinización de agua ecoamigable y neutro en carbono. Además, la integración de baterías de flujo redox con tecnologías de desalinización mejora la eficiencia y la fiabilidad del sistema.
La capacidad inherente de las baterías de flujo redox para almacenar energía excedente durante períodos de abundancia y descargarla durante la demanda pico se alinea perfectamente con los requisitos energéticos fluctuantes de los procesos de desalinización.
«El éxito de este proyecto se atribuye a la ingeniosidad y perseverancia de Stephen Akwei Maclean, el primer autor del artículo y candidato a doctorado en ingeniería química y biomolecular en NYU Tandon», dijo Taylor. «Demostró una habilidad excepcional al diseñar la arquitectura del sistema utilizando la avanzada tecnología de impresión 3D disponible en el NYU Maker Space.»
Las complejidades del sistema involucran la división del agua de mar entrante en dos corrientes: la corriente de salinización (Imagen arriba, CH 2) y la corriente de desalinización (Imagen arriba, CH 3). Dos canales adicionales albergan el electrolito y la molécula redox (Imagen arriba, A). Estos canales están efectivamente separados por una membrana de intercambio catiónico (CEM) o una membrana de intercambio aniónico (AEM).
En CH 4, los electrones son suministrados desde el cátodo a la molécula redox, extrayendo Na+ que difunde desde CH 3. La molécula redox y Na+ se transportan entonces a CH 4, donde los electrones se suministran al ánodo desde las moléculas redox, y se permite que Na+ difunda en CH 2. Bajo este potencial general, los iones Cl- se mueven de CH 3 a través del AEM a CH 2, formando la corriente de salmuera concentrada. En consecuencia, CH 3 genera la corriente de agua dulce.
«Podemos controlar el tiempo de residencia del agua de mar entrante para producir agua potable operando el sistema en modo de paso único o por lotes», dijo Maclean.
En la operación inversa, donde se mezclan la salmuera y el agua dulce, la energía química almacenada se puede convertir en electricidad renovable. En esencia, los sistemas RFD pueden funcionar como una forma única de «batería», capturando el exceso de energía almacenada de fuentes solares y eólicas.
Esta energía almacenada se puede liberar a demanda, proporcionando un complemento versátil y sostenible a otras fuentes de electricidad cuando sea necesario. La doble funcionalidad del sistema RFD muestra su potencial no solo en desalinización sino también como un innovador contribuyente a las soluciones de energía renovable.
Aunque se requieren más investigaciones, los hallazgos del equipo de NYU Tandon señalan un camino prometedor hacia un proceso RFD más rentable, un avance crítico en la búsqueda global de un aumento de agua potable. A medida que el cambio climático y el crecimiento de la población se intensifican, más regiones luchan contra la escasez de agua, subrayando la importancia de métodos de desalinización innovadores y eficientes.
Esta investigación se alinea perfectamente con la misión de DC-MUSE (Descarbonización de la Fabricación Química Utilizando Electrificación Sostenible), una iniciativa colaborativa establecida en NYU Tandon. DC-MUSE está comprometido con el avance de actividades de investigación que disminuyan el impacto ambiental de los procesos químicos a través del uso de energía renovable. El estudio actual se basa en el extenso cuerpo de trabajo del profesor Taylor en energía renovable, con un énfasis reciente en almacenar energía producida de manera sostenible para su uso durante horas fuera de pico.
Además de Taylor y Maclean, el equipo dedicado de investigadores de NYU Tandon que contribuye a este estudio incluye a Syed Raza, Hang Wang, Chiamaka Igbomezie, Jamin Liu, Nathan Makowski, Yuanyuan Ma, Yaxin Shen y Jason A. Röhrl. Colaborando a través de fronteras, Guo-Ming Weng de la Universidad de Jiao Tong en China también jugó un papel crucial como miembro del equipo.
Un hito excepcional, esta publicación marca la 100ª de Taylor’s Transformative Materials & Devices Lab. Originalmente establecido en la Universidad de Yale en 2008 y posteriormente trasladado a NYU Tandon en 2018, el laboratorio se centra en el desarrollo de materiales y dispositivos innovadores para la conversión y almacenamiento de energía, reflejando el compromiso duradero de Taylor con la investigación transformadora en el campo.