Seguimiento del Proyecto Recolecta en la TV Canaria

EL Proyecto Recolecta está conformado por Florette, BrioAgro y el ITC Canario y tiene como objetivo principal: “La predicción del momento optimo de recolección mediante Inteligencia Artificial basada en la integral térmica del cultivos”, desarrollado distintas zonas climáticas de España, concretamente en Murcia, Soria y Canarias.

Otros de los objetivos marcados es el trabajo con cultivos protegidos en Canarias, usando la última tecnología para una gestión inteligente de los recursos naturales, en Canarias concretamente centrándose en el recurso más escaso el AGUA.

En el siguiente vídeo Juani Betancor, Jefa de Sección del Departamento de Agua del ITC y Keret Doreste, Responsable de Cultivos de Florette Canarias, destaca entre otros elementos, el Riego Inteligente de BrioAgro, que consigue ahorros de agua que rondan entre el 20 y 50%, en función del cultivo y las buenas prácticas previas.

Ver vídeo completo en TVC: https://youtu.be/Tp3hJbNc9xU

El COVID-19 no consiguió retrasar el Proyecto Recolecta en Canarias, puesto que en marzo 2020, en pleno confinamiento, se realizaron las primeras instalaciones de dispositivos de BrioAgro en fincas de Florette en Gran Canaria. El Proyecto está financiado por el FEADER (Fondo Europeo Agrícola de Desarrollo Rural)

Riego en almendros para obtener el máximo rendimiento

Un estudio de las universidades de California y Córdoba afirma que el Riego en Almendros para que el cultivo ofrezca su rendimiento máximo, cifrado en 4.000 kilos por hectárea, precisa 12.500 metros cúbicos por hectárea.  A medida que se reduce la aportación de riego por debajo de esta cifra, disminuye la producción y aumenta la productividad del agua, es decir, la producción que se obtiene por cada metro cúbico de agua de riego.

El uso del agua en las plantaciones de almendro en California, máxima potencia mundial en la producción de este cultivo, y los periodos intensos de sequía que ha sufrido este Estado, llevan años preocupando a los agricultores dedicados a este tipo de explotaciones. Este problema es lo que llevó al investigador de la Universidad de Córdoba, Elías Fereres, a colaborar con el científico de la Universidad de California David Goldhamer en un estudio con el objetivo de determinar la relación entre cantidad de agua de riego y producción para los productores californianos de almendro.

El trabajo realizado durante cinco años a base de experimentos en 80 parcelas de almendros, sometidas a diferentes cantidades de agua y en una finca en el Sur del Valle de San Joaquín de California, ha logrado desarrollar la fórmula exacta para que el agricultor pueda determinar la dotación de riego y con ello la rentabilidad de la cosecha antes de comenzar la plantación. Según el catedrático de Producción Vegetal de la UCO, Elías Fereres, el estudio ha permitido afirmar que para que el cultivo de almendro ofrezca su rendimiento máximo, es decir, 4.000 kilos de almendra por hectárea, se necesitan 12.500 metros cúbicos por hectárea en el Sur del Valle de San Joaquín, una zona de clima muy similar al Valle del Guadalquivir pero con mucha menos lluvia anual (100mm).

De su análisis se deduce también que a medida que se reduce la aportación de riego por debajo de la cifra citada, disminuye la producción y aumenta la productividad del agua, esto es, la producción que se obtiene por metro cubico de agua de riego. La cifra media obtenida de la productividad del agua es aproximadamente un cuarto de kilo por metro cúbico de agua. Así, conociendo el precio de mercado del kilo de almendra es posible ponerle precio al metro cubico de agua. Un ejemplo: si el precio del kilo de almendra está a 4 euros –250 gramos costarían un euro- , el valor del metro cubico de agua no podría superar un euro como máximo.


Esta investigación, publicada recientemente en la revista Irrigation Science, permite al agricultor planificar las necesidades de agua para riego con margen de tiempo y, ante periodos de sequía, tomar decisiones sobre si debe comprar agua, si utilizar el agua de pozos de su propiedad o construir otro nuevo o compartir el agua disponible con otros cultivos. Según Fereres, los agricultores californianos dedicados a la explotación de almendro ya están usando esta información para regar en las cantidades adecuadas y la máxima productividad. Además, el catedrático indica que desde hace años se están llevando a cabo investigaciones similares en Córdoba por parte de un equipo conjunto de la UCO, IAS-CSIC e IFAPA y cuyas conclusiones están a punto de ver la luz.

Con este estudio se pueden conocer también las necesidades hídricas exactas por hectárea en una explotación, lo que contribuye a que se haga un uso sostenible de un bien tan preciado como el agua.

Goldhamer, DA; Fereres, E. Establishing an almond water production function for California using long-term yield response to variable irrigation.

IRRIGATION SCIENCE. Volume 35, Issue 3, pp 169–179 Mayo 2017.

Nuestra sala de videoconferencias es: sala.brioagro.es

Grupo Operativo Recolecta

EL Grupo Operativo Recolecta está conformado por Florette, BrioAgro y el ITC Canario. El periodo de trabajo de este Grupo Operativo Recolecta va desde el 15 de julio de 2019 al 15 de septiembre de 2020.

El Proyecto Go Recolecta aborda un presupuesto para todo el Grupo de 593.991,60 euros de los cuales BrioAgro interviene con un presupuesto de 99.130 euros, ayuda financiada por el FEADER (Fondo Europeo Agrícola de Desarrollo Rural)

GO Recolecta se refiera a: “La predicción del momento optimo de recolección mediante Inteligencia Artificial basada en la integral térmica del cultivos”

Dispositivo BrioAgro ViTA 17 colocado en una finca en Soria para monitorizar el cultivo para El Proyecto Recolecta

El objetivo del proyecto Recolecta es desarrollar un sistema de gestión agrícola inteligente y autónomo que determine la fecha óptima de recolección de cada cultivo de cuarta gama, de forma que se pueda mejorar la competitividad de los productores primarios en la cadena alimentaria, así como contribuir a la seguridad alimentaria. Un proyecto liderado por Florette, sobre la tecnología de monitorización y riego inteligente de BrioAgro junto con nuevos desarrollos de Inteligencia Artificial y Machine Learnig para predecir el día de corte del cultivo.

El tercer componente de Grupo Operativo es el ITC, que actúa como Organismo Público de Investigación (OPI) y, desde sus áreas de Análisis Ambiental y Agua, participa en el proyecto con el objetivo de contribuir al conocimiento de fitosanitarios presentes en planta, monitorizar la calidad del agua de riego y mejorar el proceso de limpieza de la materia prima en el proceso de envasado.

Equipo de BrioAgo e ITC en invernaderos de Florette en Navarra

Puedes seguir las novedades y actualizaciones del proyecto a través de:





Erosión de los suelos

La erosión es el fenómeno de eliminación gradual de los materiales de la superficie del suelo, debido a agentes químicos, físicos, biológicos y antrópicos. La entidad del fenómeno depende da la velocidad del mismo, el suelo se degrada cuando la velocidad de perdida de las partículas es mas rápido de la generación de nuevo suelo.

Se distinguen tres tipos de erosión: hídrica, glacial y eólica.

Erosión hídrica

La erosión hídrica sucede cuando la velocidad de caída del agua es superior a la velocidad de infiltración de suelo, y es una de la mayores causas de perdida de productividad de las tierras agrícolas. La erosión en los suelos agrícolas provoca el desgaste de la “capa cultivable”, reduciendo el contenido de nutrientes, micro fauna y sustancia orgánica y llevando a una reducción de fertilidad.

El proceso de erosión hídrica está influenciado por varios factores:

  • Las características de las lluvias
  • Las prácticas agrícolas
  • La topografía del terreno
  • La cobertura del terreno

Según el último informe de Reforesta, casi el 40% del suelo de España sufre riesgo de desertificación, y la reducción de la erosión es uno de los objetivos de la PAC.

Como proteger nuestros suelos de la erosión

Entre las prácticas más habituales que podemos realizar para evitar la erosión estan:

  • Mantener el suelo con cobertura vegetal, reduce aproximadamente 95 veces el potencial erosivo de las lluvias en comparación con un terreno desnudo.
  • Mantener la cobertura del suelo con residuos de cosecha y favorecer la siembra directa.
  • Las rotaciones de cultivos ayudan a mejorar la estructura del suelo y evitar así la compactación del mismo.
  • Adaptar los intervalos de riego a la necesidad del cultivo, ajustando la intensidad del riego.
  • Reducción de la pendiente del terreno.
Plantación de olivar con cubierta vegetal
Plantación de olivar con cubierta vegetal

Todas estas medidas de control son necesarias para prevenir la erosión hídrica y así preservar la fertilidad de los suelos, mejorando la calidad de las producciones y ayudando a proteger el medio ambiente.

Radiación Solar Ultravioleta

Son radiaciones electromagnéticas con longitudes de onda comprendidos entre los 200-400 nm, que son invisibles al ojo humano.

Tipos de RS-UV:

En función de las longitudes de onda en las que se encuentren podemos distinguir tres tipos:
UV A: Comprendida entre los 330-400 nm. Tiene poca importancia.
UV B: Comprendida entre los 280-320 nm. Es la más importante para las plantas.
UV C: Comprendida entre los 200-280 nm. Es la más energética y dañina para el ADN.

Gráfica de Radiación Solar Ultravioleta con línea de referencia

Es uno de los factores mas importantes que regulan el crecimiento y desarrollo de las plantas, sin embargo, en cantidades excesivas puede ser perjudicial para el cultivo. Esto ha provocado que las plantas hayan evolucionado y han sabido adaptarse a su presencia, desarrollando distintos mecanismos de defensa, con el fin de disminuir los efectos producidos por una RS UV alta.

Efectos producidos por una elevada radiación ultravioleta:

Cambios morfológicos y anatómicos (aumento de ceras y cambio en su composición, aumento grosor hojas..): atribuidos principalmente a la orientación de las hojas, debido a que atendiendo a esta orientación la planta es capaz de captar una mayor o menor radiación ultravioleta. En general, las plantas monocotiledoneas son más tolerantes a niveles elevados de radiación UV-B.
Disminución de la altura del cultivo y entrenudos más cortos: debido a la oxidación de fitohormonas inductoras del tamaño de la células.
Menor área foliar: se produce como consecuencia del efecto inhibitorio de la radiación UV-B sobre la expansión del epitelio en su cara adaxial y a la inhibición de la división celular, como se ha demostrado en distintos cultivos como el trigo.
Disminución de la actividad fotosintética: producido principalmente por la inhibición de la fotosíntesis en longitudes de onda comprendidas en la región ultravioleta del espectro.
Pérdidas de polipéptidos localizados en PSII, pérdida de pigmentos y daños genéticos.
Pérdidas de enzimas del Ciclo de Calvin: debido principalmente a la disminución directa de la enzima ribulosa 1,5 difosfato carboxilasa (Rubisco), que es la encargada de catalizar la incorporación de CO2 en el ciclo de Calvin.
Aumento en la producción de metabolitos secundarios, como fenoles y flavonoides.
Activación de procesos de lipoperoxidación en la membrana plasmática: debido fundamentalmente a que a altos niveles de UV-B se produce un estrés oxidativo en las plantas, que estas intentan paliar mediante la activación de estas especies reactivas de oxigeno (ROS).
Producen daños en las moléculas de ADN del tipo CPDs y formación de otros fotoproductos conocidos como dimeros de pirimidina pirimidona y dimeros de uracilo: por ello, las plantas desarrollan mecanismos de defensa como la Fotorreparación.

¿De qué depende la producción de nuestros cultivos?

La productividad de nuestros cultivos depende de una serie de factores, que son imprescindibles para completar de forma adecuada el proceso productivo, entre ellos podemos destacar la radiación UV.

Cada cultivo tiene unas determinadas características, que se verán afectadas de uno u otra forma por una mayor cantidad de radiación solar UV en función de la sensibilidad que presenten al efecto de la radiación UV-B, aunque también depende de otros factores bióticos y ambientales.

En los últimos tiempos, en el contexto del cambio climático , se está produciendo un aumento de la radiación UV-B, un aumento del CO2 y de la temperatura, así como cambios significativos en las precipitaciones y distribución de estas a lo largo del año, lo que esta afectando de lleno a la agricultura, modificando el ciclo vegetativo y reproductivo de la mayor parte de los cultivos.

Déficit Hídrico

El déficit hídrico responde a los gramos de vapor de agua que le faltan a la atmósfera, a una temperatura, para estar saturada. Depende de la humedad relativa y la temperatura ambiental. Se mide en gramos de agua en cada kilogramo de aire.

Este indicador nos marca los posible periodos tanto de estrés hídrico, debidos a baja humedad relativa y altas temperaturas, como de peligro de plagas y enfermedades por exceso de humedad relativa y temperaturas bajas.

A lo largo de un día, este parámetro varía de tal forma que pueden encontrarse momentos de alto y bajo déficit hídrico en 24 horas. Que los efectos perjudiciales que nos indican puedan afectar al cultivo, dependerán de la duración en el tiempo de los mismos, así como de la disponibilidad de agua que tenga la planta el terreno.

Gráfica de déficit hidrico. Rango superior indica estrés hídrico. Rango inferior, peligro de plagas y enfermedades
Gráfica déficit hídrico

Rangos

En cuanto a límites, el óptimo estaría entre los valores de 2 a 6 g H20/Kg aire; siendo óptimos los valores en la parte superior desde 6 hasta 15 g H20/Kg aire, y en la parte inferior de 2 a 1 g H20/Kg aire. Superando esos valores, ya estaríamos en una zona de “peligro”.

Rangos de déficit hidrico.
2-6 optimo
6-15 admisible
2-1 optimo
+15- out. estres hidirco
-1- out. plagas y enfermedades
Rangos Déficit Hídrico

Alto déficit hídrico

Cuando los valores entran el el rango OUT de la parte superior (valores por encima de 15 g H20/kg aire), se pueden dar periodos de estrés hídrico en el cultivo que si son prolongados en el tiempo pueden afectar al mismo.

Estos periodos pueden ser:

Corta duración : varias horas a lo largo del día, sobre todo en los momentos centrales del mismo, en el cual la demanda evaporativa es mayor. Estos cortos periodos no deben afectar al cultivo ya que son puntuales.

Larga duración: pueden producirse alteraciones en el crecimiento y producción del cultivo.

Es muy importante que cuando se prevean posibles condiciones adversas que puedan provocar estos periodos de estrés hídrico; la planta tenga a su disposición el agua necesaria para que los efectos no sean a gran escala y puedan causar retrasos en el crecimiento, flacidez, pérdidas de producción,etc.

Si hablamos de estrés controlado, a veces se practica para la determinación del tamaño de frutos en ciertos cultivos, la mejora de la calidad de cosechas o prácticas como el control de crecimiento en especies hortícolas que lo requieren.

Bajo déficit hídrico

Al contrario que lo descrito en el apartado anterior, en valores bajos niveles de déficit hídrico (valores inferiores a 1 g H20/Kg aire), se consideran condiciones óptimas para el desarrollo de muchas plagas y enfermedades que suelen afectar a los cultivos, sobre todo la mayoría de los hongos.

Éstos, suelen desarrollarse en condiciones de altas humedades y bajas temperaturas, como son el phytium o el mildiu, plagas que pueden destrozar un cultivo en muy corto periodo de tiempo.

Es normal, que en las horas de noche y amanecida, los valores estén en rangos de peligro. Al ser condiciones ambientales, y ser este parámetro un indicador en exterior, no se podría tener la opción de ventilación como podríamos hacer en invernadero, por tanto, ante estas situaciones, se recomienda que el nivel de humedad que tenga el cultivo en suelo no sea excesivamente elevado.

Presión atmosférica

La presión atmosférica es la fuerza que ejerce la atmósfera sobre cualquier punto de la superficie terrestre. Se puede medir con el barómetro. Su unidad de medida es la atmósfera, Pascal (N/m2), bares y sus respectivos submúltiplos.

Gráfico de Presión atmosférica con linea de referencia.

Esta es fundamental para favorecer el crecimiento y desarrollo de un cultivo, situándose como valor óptimo los 101 kPa (1010 mbar), que se corresponden con la presión atmosférica existente a nivel del mar.

RANGOS:

La fluctuación de la presión atmosférica existente en los distintos puntos del planeta tierra va a depender de la altitud y la temperatura. A mayor altitud menor será la presión, mientras que a menor altitud y mayor cercanía a nivel del mar mayor será la presión. Por otro lado, otro factor fundamental que afecta a la presión es la temperatura, ya que una mayor temperatura dará lugar a una mayor dispersión de gases y una menor presión, mientras que una menor temperatura dará lugar a una mayor presión atmosférica.

Presión atmosférica alta:

Las zonas de mayor presión atmosférica se suelen corresponder con zonas en las que existe una menor cantidad de agua y pocas precipitaciones, por lo que afectaría de forma directa a las condiciones del cultivo, produciendo un menor desarrollo y crecimiento, una mayor dificultad para la absorción de nutrientes, etc.

Presión atmosférica baja:

Los requerimientos energéticos de los cultivos son muy grandes debido a la necesidad de grandes cantidades de dióxido de carbono, agua y sales minerales para realizar el proceso fotosintético. En zonas donde la presión atmosférica es muy baja se produce un gran descenso del intercambio de gases del cultivo con la atmósfera, lo que afectaría de lleno a la nutrición del cultivo debido a la menor disponibilidad de dióxido de carbono, siendo este gas imprescindible para realizar la fotosíntesis.

Por tanto, podemos decir que una menor presión atmosférica daría lugar a una menor apertura de los estomas, una menor cantidad de C02 disponible para el cultivo, una menor fotosíntesis y por ello una menor nutrición de la planta.

DPV – Déficit de Presión de Vapor

El DPV o déficit de presión de vapor, es la diferencia entre la cantidad de vapor de agua que puede retener la atmósfera y la que contiene en ese momento.

Gráfica representativa del DPV
Gráfico de DPV con líneas de referencia en invernadero.

Este indicador que se mide en KPa – kilopascales, y se obtiene gracias a información recogida por la monitorización del ambiente de un invernadero con sensores de humedad relativa y temperatura. Aunque se pueda medir en cultivos al raso, solo en los invernaderos es donde se puede gestionar usando distintas acciones de control de clima.

Rangos de DPV

El DPV suele presentar valores más altos y cercanos al estrés durante las horas centrales del día y valores bajos donde los peligros de plagas y enfermedades se presentan, durante el amanecer. Los valores de referencia de este parámetro son los siguientes:

Rangos de DPV
Rangos de DPV, óptimo comprendido entre 0,5-2 Kpa

DPV Alto

Cuando el DPV alcanza valores superiores a 2Kpa, se produce una transpiración excesiva, haciendo que la planta cierre sus estomas para evitar la deshidratación y con ello una pérdida de agua excesiva, provocando así el estrés hídrico a la planta.

Si este proceso se da durante periodos cortos, no supondrá un problema para la planta ya que cuando baje el DPV durante las noches, absorberá suficiente agua como para recuperarse. En cambio, si los periodos se alargan, puede provocar daños irreversibles en la planta como quemaduras .

DPV Bajo

Cuando los valores de DPV son inferiores a 0,5 Kpa, quiere decir que la atmósfera esta saturada y que la planta no puede transpirar por lo que le afectará también en la fotosíntesis.

La planta, ante esta situación, tiende a cerrar los estomas para no perder agua. Es importante conocer el DPV, ya que se usa para programar los riegos, para determinar si se necesitan intercambios de aire y si se debe aumentar la temperatura del aire para mantener más humedad.

Las plantas siempre están ajustando las aberturas de las estomas de las hojas según el DPV, que depende de la humedad del aire, la temperatura y en menor medida de la presión atmosférica. Así como la humedad alta es un problema, ya que el uso de agua de la planta es demasiado lento y compromete la calidad, incluso si los estomas están constantemente abiertos. Asimismo, episodios de DPV altos van relacionados con humedad baja, lo que significa que la transpiración es demasiado alta, y la planta, como medida de precaución cierra las aberturas de las estomas para minimizar la pérdida de agua y el marchitamiento. Desafortunadamente, esto también significa un ralentizamiento de la fotosíntesis que finalmente, repercute en un menor crecimiento de la planta.

DPV en invernaderos

Este DPV – déficit de presión de vapor se ha integrado en muchos sistemas de control ambiental en invernaderos para administrar la humedad y para programar los riegos de los cultivos.

En la práctica las principales acciones que llevan a cabo los agricultores de invernadero son ventilar cuando el DPV es demasiado bajo, abrir las ventanas o bandas del invernadero apara equilibrar esos niveles, con esta práctica, se intenta buscar una disminución de la humedad relativa y un aumento de la temperatura.

Y por otro lado cuando el DPV muestra valores demasiado altos, se actúa aumentando la humedad, eso no significa que halla que regar las plantas, sino que el ambiente necesita mayor grado de humedad. En esos casos también se puede trabajar con medidas que ayuden a reducir la temperatura, como pueden ser el despliegue de mallas de sombreo durante esos episodios. Puntualmente hemos observado que al entrar un viento húmedo a menor temperatura, abrir la banda de ese lado puede ayudar a bajar la temperatura ambiental.

La solución más común para bajar un DPV alto es el riego de las calles del invernadero, si son de tierra mucho mejor, con gotero o nebulización a baja altura. Y en otros casos con nebulización dirigida a las paredes del invernadero, evitando en ambos casos que no caigan gotas en el cultivo.

Webinar 28 abril 12:00. Jornada de presentación del proyecto RECOLECTA

El Instituto Tecnológico de Canarias (ITC), FLORETTE y BRIOAGRO organizan esta Jornada de presentación del proyecto RECOLECTA (Grupo operativo predicción del momento óptimo de recolección mediante gestión integral térmica de cultivos) que cuenta con financiación del Ministerio de Agricultura, Pesca y Alimentación (MAPAMA-PNDR 2019).

Agenda de la Webinar

Este proyecto tiene por objetivo principal desarrollar un sistema de gestión agrícola inteligente y autónomo que determine la fecha óptima de recolección de cultivos de cuarta gama en 3 zonas de España diferentes: Canarias, Murcia y Soria.

La inscripción al evento es obligatoria para poder recibir el enlace a la sala virtual. Se abrirá la sesión 10 minutos antes de dar comienzo el evento (11:50 CEST). Se ruega puntualidad. Plazas limitadas a 100 asistentes.

Para inscribirse debe enviar los datos que se solicitan a continuación al correo agua_webinar@itccanarias.org:

  • Nombre:
  • Cargo:
  • Entidad:
  • Correo electrónico:
  • Autorizo a grabar el webinar para que pueda ser divulgado en RRSS: SI/ NO.
  • Autorizo a los socios del proyecto a usar mi correo electrónico para divulgar información del mismo: SI /NO

El proyecto RECOLECTA está financiado por el Programa Nacional de Desarrollo Rural 2014-2020 (PNDR), contando con una aportación comunitaria del 80 % proveniente del Fondo Europeo Agrícola de Desarrollo Rural: Europa invierte en las zonas rurales (FEADER) y al 20 % por fondos de la Administración General del Estado.

BrioAgro, primera startup elegida por @wbaforum 2020

BrioAgro ha sido la primera startup elegida por @wbaforum para ser invertida, dentro del World Business Angels Investment Forum, celebrado los días 17 y 18 de febrero en Estambul, Turquía.

De un total de 100 empresas emergentes, 13 obtuvieron la oportunidad de participar en el Escenario Global para la Recaudación de Fondos (GFRS), durante el Foro de Inversión en Ángeles de Negocios Mundiales (WBAF) 2020, representando a 42 países.

El GFRS es una plataforma internacional de inversión conjunta para los inversores, empresas emergentes y scale-ups (empresas de alto crecimiento), y su objetivo es crear una cartera de clientes de alta calidad con algunas empresas emergentes y de alto crecimiento que participan en el evento.

Desde su creación en 2015 BrioAgro ha sido la primera startup elegida en muchas ocasiones, como fue la aceleradora Impúlsame de Mairena del Alcor, Sevilla, Andalucía. La aceleradora agroalimentaria Orizont, en Tudela, Navarra y recientemente BrioAgro también ha sido la primera startup elegida por la primera cooperativa de España, Grupo AN, para resolver el reto de su digitalización agrícola, destacando sobre todo la ejecución de soluciones de riego inteligente adaptada a su amplia cartera de cultivos de regadío.

BrioAgro’s Smart Irrigation pitchWinner in the World Congress of Angel Investors 2020

¿Qué es el World Congress of WBAF? 

WBAF 2020 es el mayor evento de inversores financieros en startups fases tempranas y de crecimiento. Se trata de una oportunidad única no solo para Business Angels y Venture Capital para intercambiar ideas sobre mejores prácticas sino también para la industria y los negocios que busquen nuevas conexiones y oportunidades de negocio. 

Por primera vez, el WBAF ha ofrecido una oportunidad única a 100 start-ups y scale-ups seleccionadas para presentar sus empresas durante el Global Fund Raising Stage (GFRS) del Congreso Mundial del WBAF 2020. 

WBAF 2020 proporciona una plataforma establecida para Fondos de Private Equity, empresas de gestión de patrimonios, Family Offices, bancos, bolsas de valores, parques científicos y tecnológicos, toda una serie de agentes de innovación con el objetivo de desarrollar una red global de agentes de innovación más brillantes. 

Aquellas empresas que consiguen salir en el GFRS obtienen la oportunidad de reunirse con los mejores ‘inversores ángeles’ y aprovechar sus inversiones, así como de sus servicios como mentores.

El WBAF, conocido como el ‘Davos’ de las inversiones iniciales y los mercados de capital, acogió a cientos de participantes de 92 países y 132 oradores internacionales en 24 paneles, incluidos inversionistas ángeles, capitalistas de riesgo, diseñadores de políticas, empresarios y líderes empresariales.

El evento se ha desarrollado a lo largo de 7 cumbres temáticas:

  • Global Women Leaders Summit
  • Global StartUps Summit
  • Angel Investors Summit
  • CEO INVESTORS Summit
  • FINTECH Summit
  • Science, Technology & Innovation Summit
  • FDI Summit

BrioAgro Tech, es una startup nacida en Mairena del Alcor, Sevilla, y que tras ser seleccionada en Orizont trasladó su domicilio al Vivero de Innovación Agroalimentaria de Tudela, Navarra, por lo que está implantada en Andalucía y Navarra.

BrioAgro ha acudido a este congreso mundial WBAF de la mano del ICEX y Extenda Andalucía junto con otras 10 Startups andaluzas.

Los medios de comunicación y redes sociales han recogido esta noticia:

Social media & sharing icons powered by UltimatelySocial